







# DAW®

CONE





# **OPTIFLEX**



# Claim to fame

- Easy to pull even thickness
- Transparent
- Extremely easy to drape mold
- Guaranteed not to shrink
- Excellent for suction sockets
- Unparalleled flexibility
- Available in 6, 9 and 12<sub>mm</sub>

# $R_{\chi}$ INDICATIONS

• AMPUTEE REQUIRING THE ULTIMATE IN COMFORT AND FUNCTION WITH A FLEXIBLE INTERFACE SOCKET.



OPTIFlex2 $^{\text{M}}$ , a revolutionary new plastic for flexible sockets with a soft, human touch. Designed with a unique blend of silicone and polyethylene like materials, it is extremely easy to work with and guaranteed not to shrink. Its transparency allows for detailed evaluation of the fit and comfort of the most intricate sockets. Form-fitting comfort, with total flexibility makes OPTIFlex2 $^{\text{M}}$  the ultimate choice for a custom-crafted prosthesis.

# **HOW TO ORDER**



Please refer to Chart in section 10.2A pg. 04



# **IFLEX**

| THICKNESS | SIZE                                                    | STOCK #                    | TEMP                 | TIME       |
|-----------|---------------------------------------------------------|----------------------------|----------------------|------------|
| 6mm       | 15 ½ x 15 ½ in (39 x 39 cm)                             | PCT-6M1616                 | <b>350°F</b> (175°C) | 7 Minutes  |
|           | 32 x 48 in (81 x 122 cm)<br>15 ½ x 15 ½ in (39 x 39 cm) | PCT-6M3248<br>PCT-9M1616   | , ,                  |            |
| 9mm       | 32 x 48 in (81 x 122 cm)                                |                            | <b>350°F</b> (175°C) | 9 Minutes  |
| 12mm      | 15 ½ x 15 ½ in (39 x 39 cm)<br>32 x 48 in (81 x 122 cm) | PCT-12M1616<br>PCT-12M3248 | <b>350°F</b> (175°C) | 10 Minutes |

# **OPTIFLEX2 BLISTER FORMING TECHNIQUE**

- 1. Place the positive model on a vacuum forming platform (PA-VP). DO NOT PLACE A NYLON STOCKINETTE OVER THE MODEL. THE OPTIFLEX2 WILL STICK TO ANY VACUUM INTERFACE.
- 2. Place a piece of OPTIFLEX2 into a Vacuum Forming Frame (PA-VF) and place into an oven at 350°F. Monitor the drape carefully.
- **3.** Allow the OPTIFLEX2 to drape below the frame approximately 3/8 the length of the cast. Do not "flip" the frame after removing from oven.
- **4.** Position the frame over the positive model and SLOWLY pull the frame down the length of the model until it sets firmly against the vacuum platform (i.e. 80 seconds for a 14" pull).
- **5.** SLOWLY apply the vacuum to the model with the Thermics Vacuum Foot Valve (PA-VV). 6 to 10 inches Hg is recommended.

# **VACUUM FORMING THE OUTER FRAME**

- **6.** Add a distal buildup on the end of the model with plaster, pelite or foam. Ensure the buildup is of correct length and alignment; trim the build-up so it matches the diameter of the thermoplastic connector (TSC-T, GUPT-TH4HROT, GUPT-TH4H9CM).
- 7. Pull a generously powdered OPTIFLATE™ separating balloon over the entire OPTIFLEX2covered model. (DO NOT PULL A NYLON SEPARATING STOCKINETTE OVER THE OPTIFLEX2, IT WILL DAMAGE THE SOCKET.)\*
- **8.** Place the thermoplastic connector on top of the distal buildup. Apply a thin nylon over the entire model and vacuum form the outer frame with THERMICS POLYPROPYLENE.
  - \* Alternatively, make a plaster wrap of the OPTIFLEX2-covered model and fill to make a dummy model. After a buildup is created, the polypropylene frame may be vacuum formed using a nylon interface over the dummy model without using a latex separator.



# **Rigiflex**<sup>™</sup>

# OPTIFLEX™ WITH A LITTLE BIT OF RIGIDITY!



# Claim to fame

- Guaranteed not to shrink
- · Flexible with a little bit of rigidity
- Transparent
- · Extremely easy to droop and mold
- Excellent for suction sockets
- Available in 12mm thickness

# $R_{\chi}$ INDICATIONS

 AMPUTEE REQUIRING THE ULTIMATE IN COMFORT AND FUNCTION WITH A FLEXIBLE INTERFACE SOCKET.



RIGIFLEX™, a revolutionary new plastic for flexible sockets with a soft, human touch. Designed with a unique blend of silicone and polyethylene like materials, it is extremely easy to work with and guaranteed not to shrink. Its transparency allows for detailed evaluation of the fit and comfort of the most intricate sockets. Form-fitting comfort, with semi-flexibility makes RIGIFLEX™ the ultimate choice for a custom-crafted prosthesis.

# **HOW TO ORDER**



Please refer to Chart in section 10.2B pg. 02



# **RIGIFLEX**

| STOCK #      | THICKNESS | SIZE                                | TEMP                 | TIME       |
|--------------|-----------|-------------------------------------|----------------------|------------|
| PCT-R12M1616 | 12mm      | <b>15½ x 15½ in</b><br>(39 X 39 cm) | <b>350°F</b> (175°C) | 10 Minutes |
| PCT-R12M3248 | 12mm      | <b>12½ x 19 in</b> (32 X 48 cm)     | <b>350°F</b> (175°C) | 10 Minutes |

# RIGIFLEX BLISTER FORMING TECHNIQUE

- 1. Place the positive model on a vacuum forming platform (PA-VP). DO NOT PLACE A NYLON STOCKINETTE OVER THE MODEL. THE RIGIFLEX WILL STICK TO ANY VACUUM INTERFACE.
- **2.** Place a piece of RIGIFLEX into a Vacuum Forming Frame (PA-VF) and place into an oven at 350°F. Monitor the drape carefully.
- **3.** Allow the RIGIFLEX to drape below the frame approximately 3/8 the length of the cast. Do not "flip" the frame after removing from oven.
- **4.** Position the frame over the positive model and SLOWLY pull the frame down the length of the model until it sets firmly against the vacuum platform (i.e. 80 seconds for a 14" pull).
- **5.** SLOWLY apply the vacuum to the model with the Thermics Vacuum Foot Valve (PA-VV). 6 to 10 inches Hg is recommended.

# **VACUUM FORMING THE OUTER FRAME**

- **6.** Add a distal buildup on the end of the model with plaster, pelite or foam. Ensure the buildup is of correct length and alignment; trim the build-up so it matches the diameter of the thermoplastic connector (TSC-T, GUPT-TH4HROT, GUPT-TH4H9CM).
- 7. Pull a generously powdered OPTIFLATE™ separating balloon over the entire RIGIFLEX-covered model. (DO PULL A NYLON SEPARATING STOCKINETTE OVER THE RIGIFLEX, IT WILL DAMAGE THE SOCKET.)\*
- **8.** Place the thermoplastic connector on top of the distal buildup. Apply a thin nylon over the entire model and vacuum form the outer frame with THERMICS POLYPROPYLENE.
  - \* Alternatively, make a plaster wrap of the RIGIFLEX-covered model and fill to make a dummy model. After a buildup is created, the polypropylene frame may be vacuum formed using a nylon interface over the dummy model without using a latex separator.



# TO FICE AT

section 10.20 p.01

It's tough,

The message is clear, as glass

VIRTUALLY

UNBREAKABLE

- The easiest pull ever!
  - Clear as glass Honest
    - Spot heat to modify (can even use a "torch lighter")
      - · Tough as nails
        - No shrinkage





| STOCK #         | THICKNESS | SIZE           | TEMP                 | TIME       |
|-----------------|-----------|----------------|----------------------|------------|
| PCCLEAR-8M1616  | 8mm       | 15 ½ x 15 ½ in | <b>330°F</b> (165°C) | 12 Minutes |
| PCCLEAR-1ØM1616 | 1Ømm      | 15 ½ x 15 ½ in | <b>330°F</b> (165°C) | 13 Minutes |
| PCCLEAR-12M1616 | 12mm      | 15 ½ x 15 ½ in | <b>330°F</b> (165°C) | 15 Minutes |

# TUF'nClear™ TECHNIQUE

- **1.** Place the positive model on a vacuum forming platform (PA-VP).
- 2. Place a piece of TUF'nClear into a Vacuum Forming Frame (PA-VF) and place into an oven at 350°F. Monitor the drape carefully.
- **3.** Allow the TUF'nClear to drape below the frame approximately  $\frac{2}{3}$  the length of the socket. "Flip" the frame after removing from oven.
- 4. Position the frame over the socket and SLOWLY pull the frame down the length of the model until it sets firmly against the vacuum platform
- **5.** SLOWLY apply the vacuum to the model with the Thermics Vacuum Foot Valve (PA-VV). 6 to 10 inches Hg is recommended.

# VACUUM FORMING THE OUTER FRAME

- 6. Add a distal buildup on the end of the model with plaster, pelite or foam. Ensure the buildup is of correct length and alignment; trim the build-up so it matches the diameter of the thermoplastic connector (TSC-T).
- 7. Pull an OPTIFLATE™ separating balloon over the entire TUF'nClear -covered model. (DO NOT PULL A NYLON SEPARATING STOCKINETTE OVER THE TUF'nClear, IT WILL DAMAGE THE SOCKET.)\*
- 8. Place a thermoplastic connector (TSC-T) on top of the distal buildup. Apply a thin nylon over the entire model and vacuum form the outer frame with THERMICS POLYPROPYLENE.
  - \*Alternatively, make a plaster wrap of the TUF'nClear covered model and fill to make a dummy model. After a buildup is created, the polypropylene frame may be vacuum formed using a nylon interface over the dummy model without using a latex separator.



THERMICS" POLYPROPYLENE

| THICKNESS        | 16 in X 16 in | 24 in X 48 in | 32 in X 48 in | 48 in X 96 in |
|------------------|---------------|---------------|---------------|---------------|
| 1/8 in (.32 cm)  | N/A           | PP1/8-2448    | PP1/8-3248    | PP1/8-4896    |
| 3/16 in (.48 cm) | N/A           | PP3/16-2448   | PP3/16-3248   | PP3/16-4896   |
| 1/4 in (.64 cm)  | PP1/4-1616    | PP1/4-2448    | PP1/4-3248    | PP1/4-4896    |
| 3/8 in (.95 cm)  | PP3/8-1616    | N/A           | N/A           | PP3/8-4896    |
| 1/2 in (1.27 cm) | PP1/2-1616    | N/A           | N/A           | PP1/2-4896    |
| 5/8 in (1.58 cm) | PP5/8-1616    | N/A           | N/A           | PP5/8-4896    |

### SHEET MOLDING

| THICKNESS        | TEMPERATURE F° | TIME/MINUTES |
|------------------|----------------|--------------|
| 1/8 in (.32 cm)  | 330°           | 20           |
| 3/16 in (.48 cm) | 330°           | 20           |
| 1/4 in (.64 cm)  | 340°           | 20           |

### DROOP MOLDING

| THICKNESS        | TEMPERATURE F° | TIME/MINUTES |
|------------------|----------------|--------------|
| 1/4 in (.64 cm)  | 460°           | 8.5          |
| 3/8 in (.95 cm)  | 460°           | 15           |
| 1/2 in (1.27 cm) | 460°           | 17           |
| 5/8 in (1.58 cm) | 460°           | 19.5         |

# THERMICS" POLYETHELYNE

| THICKNESS        | 16 in X 16 in | 24 in X 48 in | 32 in X 48 in | 48 in X 96 in |
|------------------|---------------|---------------|---------------|---------------|
| 1/8 in (.32 cm)  | N/A           | PE1/8-2448    | PE1/8-3248    | PE1/8-4896    |
| 3/16 in (.48 cm) | N/A           | PE3/16-2448   | PE3/16-3248   | PE3/16-4896   |
| 1/4 in (.64 cm)  | PE1/4-1616    | PE1/4-2448    | PE1/4-3248    | PE1/4-4896    |
| 3/8 in (.95 cm)  | PE3/8-1616    | N/A           | N/A           | PP3/8-4896    |

## SHEET MOLDING

| THICKNESS        | TEMPERATURE F° | TIME/MINUTES |
|------------------|----------------|--------------|
| 1/8 in (.32 cm)  | 300°           | 20           |
| 3/16 in (.48 cm) | 300°           | 20           |
| 1/4 in (.64 cm)  | 310°           | 20           |

## DROOP MOLDING

| THICKNESS       | TEMPERATURE F° | TIME/MINUTES |
|-----------------|----------------|--------------|
| 1/4 in (.64 cm) | 397°           | 8            |
| 3/8 in (.95 cm) | 410°           | 12           |

